Requirements/prerequisites: 1E1, 1E2
Number of lectures per week: 3 + 1 tutorial (tutorials starting week 2)
Duration: 11 weeks
The Annual Exam will have 6 questions. Credit will be given for the best 5 questions. Tutorial sheets/assignments counting 10% and Final Exam 90%.
Examination material is within the scope of the problem sheets.
NEW: Collaboration platform and Chat room
Rough hand-written Lecture Notes (not essential for understanding the material) can be found
here,
here,
here
and
here for applications to ODE
Problem Sheets in PDF:
Sheet 1
Sheet 2
Sheet 3
Sheet 4
Sheet 5
Sheet 6
Sheet 7
Sheet 8
Sheet 9
Most solutions to the exercises are very similar to
those older ones that can be found here,
here and here
and
here.
Solutions to the last two exercises from 2015 are here.
Every problem in the calculus of variations has a solution, provided
the word solution is suitably understood.
-- David Hilbert
Objectives. The objectives of this course are to give the participants a basic grounding in the mathematics that underlies applications of the mathematics to engineering and to promote an ability among the participants to apply this knowledge to new situations.
Course outline:
Linear Algebra: Chapters 3-6 (11th and 10th edition) or 3-7 (9th edition) in
Anton-Rorres' book "Elementary Linear Algebra (with applications)". Euclidean n-Space and n-Vectors, Operations with them. Linear Transformations and their Matrices. Subspaces. Linear Combinations of Vectors. Subspaces spanned by a Set of Vectors. Linear Independence of a Set of Vectors. Basis and Dimension. Standard Basis in n-space. Coordinates of Vectors relative to a Basis. General and Particular Solutions for a Linear System. Row, Column and Nullspace of a Matrix. Finding Bases for them using Elementary Row Operations. Rank and Nullity of a Matrix. Inner Products, Lengths, Distances and Angles relative to them. Orthogonal and Orthonormal Bases relative to an Inner Product. Orthogonal projections to Subspaces. Gram-Schmidt Process (see Example 7 in Chapter 6.3). Eigenvalues and Eigenvectors of Square Matrices.
Fourier Analysis: Chapter 11 (in 10th ed.) in Kreyszig' book "Advanced Engineering Mathematics". Fourier Series for periodic functions. Euler Formulas for the Fourier Coefficients. Even and Odd Functions. Fourier Cosine and Fourier Sine Series for them. Fourier Integral and Fourier Transform.
Helpful links.
Calculus:
Calculus for Beginners and Artists by Daniel Kleitman
Multivariable Calculus Online by Jeff Knisley
Linear Algebra:
Importance of Linear algebra in Engineering Design Methodology by Mysore Narayanan (PDF file)
Linear Algebra Toolkit by Przemyslaw Bogacki
Java applet introducing 3-vectors by Maths Online
Matrix Algebra Tutorials by S.O.S. MATHematics
A Linear Algebra book by Jim Hefferon
An Intuitive Guide to Linear Algebra by Better Explained
The beauty I see in algebra by Margot Gerritsen at TEDxStanford
Fourier Theory:
An Interactive Guide To The Fourier Transform by Better Explained
Intuitive Understanding Of Eulerâ€™s Formula by Better Explained
Beautiful Fourier series visualisation with d3.js
Miscellaneous:
Beautiful WebGL water simulation by Evan Wallace and the author's article about it
How should mathematics be taught to non-mathematicians? by Timothy Gowers (1998 Fields Medal)
Why Do We Learn Math? by Better Explained
Old 2E1/2E2 web pages.
2E01 2018
by Dmitri Zaitsev with Problem Sheets and Solutions.
2E01 2017
by Dmitri Zaitsev with Problem Sheets and Solutions.
2E01 2016
by Dmitri Zaitsev with Problem Sheets.
2E02 2015
by Dmitri Zaitsev with Problem Sheets.
2E02 2014
by Dmitri Zaitsev with Problem Sheets.
2E02 2013
by Dmitri Zaitsev with Problem Sheets.
2E02 2012
by Dmitri Zaitsev with Problem Sheets.
2E02 2011
by Dmitri Zaitsev with Problem Sheets.
2E02 2010
by Dmitri Zaitsev with Problem Sheets.
2E2 2008-09
by Dmitri Zaitsev with Problem Sheets and some Solutions.
2E2 2007-08
by Dmitri Zaitsev with Problem Sheets and some Solutions.
2E1 2006-07 Part I by Richard Timoney and Part II
by Dmitri Zaitsev with Problem Sheets and some Solutions.
2E1 2005-06
by Dmitri Zaitsev with Problem Sheets and some Solutions.
2E1 2004-05
by Dmitri Zaitsev with Problem Sheets and some Solutions.
2E1 2003-04
by Fermin Viniegra with many interesting links.
Past examinations:
TCD examination papers (2012 - present)
TCD examination papers (1998 - 2012)
School of Mathematics examination papers (1992 - 2000)
For Scholarship exam related problems see also years 2009
and 2008 papers.
Student Counselling Service
Feedback Form:
I will appreciate any (also critical) suggestions
that you may have for the next term.
Let me know your opinion, what can/should be improved,
avoided etc. and I will do my best to follow them.
Please use
this feedback form where you can also send anonymous messages.